If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18-18x^2=0
a = -18; b = 0; c = +18;
Δ = b2-4ac
Δ = 02-4·(-18)·18
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*-18}=\frac{-36}{-36} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*-18}=\frac{36}{-36} =-1 $
| 180=(20-2m)°+(m-130)° | | 4d-1=105 | | 10x^2-1960=0 | | -45x^2+15x=0 | | 102=-7x+6(6x-12) | | -4x-12=2x-8 | | 4×-3y+1=3 | | 16=w•8 | | 5a+3+90=52 | | 8q-5-81=180 | | 8q-5=81 | | -10-5hh=-6 | | 6r-4-94=180 | | 38.4=1/2b×12.8 | | 2w-1-w-8=180 | | 6n^2+12n=48 | | 5t+6+90+49=180 | | x=80+x | | 1+11x=45 | | -w=26 | | -4p=84 | | 4v+3+90+5v+6=180 | | 15.6=4n | | 6(-3r+3)=126 | | 6(-3r+3)=127 | | 2(-x-6)=43(x+5) | | 2x+8=63+7=180 | | 0+12=3p | | 2x+8=63+7=80 | | 15x3-(20x2)=0 | | 2x^2+(-14x)+1=0 | | 10x+x²=128 |